
Package: complexNet (via r-universe)
August 31, 2024

Type Package

Title Complex Network Generation

Version 0.2.0

Description Providing a set of functions to easily generate and
iterate complex networks. The functions can be used to generate
realistic networks with a wide range of different clustering,
density, and average path length. For more information consult
research articles by Amiyaal Ilany and Erol Akcay (2016)
<doi:10.1093/icb/icw068> and Ilany and Erol Akcay (2016)
<doi:10.1101/026120>, which have inspired many methods in this
package.

License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.2.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports methods

URL https://marcosmolla.github.io/complexNet/,

https://github.com/marcosmolla/complexNet

BugReports https://github.com/marcosmolla/complexNet/issues

Date 2022-11-09 09:00:02 UTC

Repository https://marcosmolla.r-universe.dev

RemoteUrl https://github.com/marcosmolla/complexnet

RemoteRef HEAD

RemoteSha 4dcaa7954999ed7952a4a791ad9b34189f8bd74d

1

https://doi.org/10.1093/icb/icw068
https://doi.org/10.1101/026120
https://marcosmolla.github.io/complexNet/
https://github.com/marcosmolla/complexNet
https://github.com/marcosmolla/complexNet/issues

2 avg_degree_bnr

Contents
avg_degree_bnr . 2
init_graph . 3
iterate_bnr . 3
iterate_kp . 5
make_bnr . 6
make_kp . 7

Index 8

avg_degree_bnr Expected average degree of BNR networks

Description

Calculates the expected average degree of a BNR network (single parent only) based on the approx-
imation by Ilany and Akcay, 2016 (see details).

Usage

avg_degree_bnr(n, pb, pn, pr)

S4 method for signature 'numeric,numeric,numeric,numeric'
avg_degree_bnr(n, pb, pn, pr)

Arguments

n Number of nodes in the network

pb Probability to connect to parent (default is 1)

pn Probability to connect to neighbour of parent(s)

pr Probability to connect to individuals that are not connected to

Details

The expected average degree d̄ is calculated as

d̄ =
(N − 1)(pb + (N − 2)pr)

N − 1− (N − 2)(pn − pr)

Value

Returns the expected average degree of a BNR network as a numeric value. This value is an analytic
result and not a numeric approximation (compare examples below).

References

Ilany, A., and Akçay, E. (2016). Personality and Social Networks: A Generative Model Approach.
Integrative and Comparative Biology, 56(6), 1197–1205. doi:10.1093/icb/icw068

https://doi.org/10.1093/icb/icw068

init_graph 3

Examples

Expected degree
avg_degree_bnr(n = 100, pb = 1, pn = .2, pr = .02)
Compare to simulated network with identical parameters
adjm <- make_bnr(n = 100, np = c(0,0), pb = 1, pn = .2, pr = .02)
mean(adjm) * 100

init_graph Initialising a random graph

Description

init_graph takes number of nodes (n) and average degree (deg) to generate a random graph.

Usage

init_graph(n, deg)

S4 method for signature 'numeric,numeric'
init_graph(n, deg)

Arguments

n Number of nodes in the network

deg Average degree in the network

Value

Returns an unweighted (binary) adjacency matrix, where each cell represents the presence (1) or
absence (0) of an interaction between the row and the column individual.

Examples

init_graph(n = 10, deg = 4)

iterate_bnr Iterating a bnr network

Description

Iterating a bnr network

4 iterate_bnr

Usage

iterate_bnr(adjm, np, pb, pn, pr)

S4 method for signature 'matrix,numeric,numeric,numeric,numeric'
iterate_bnr(adjm, np, pb, pn, pr)

Arguments

adjm Adjacency matrix

np numeric vector setting ids for the newborn (i.e. which individual will be re-
placed with a new one) and a parent(s). Length 2 or 3. If you want to randomly
select an id for the newborn (first value) and parents (second and third value),
simply use c(0,0) or c(0,0,0). For one parent, the focal individual connects to
this parent with probability pb. For two parent values, the individual connects to
two parents each with probability pb.

pb Probability to connect to parent. Default is 1.

pn Probability to connect to neighbour of parent(s)

pr Probability to connect to individuals that are not connected to the parent

Details

If you just want to iterate the graph you can use np=c(0,0) or np=c(0,0,0). However, the function
does not return the ids of the newborn and the parent(s). If you want to keep track of the ids that are
changed, you should provide these as an input to the function.

Value

Returns an iterated version of the supplied adjacency matrix as a numeric matrix.

Examples

Set up linking parameters:
pb <- 1
pn <- 0.2
pr <- 0.01
Generate a network based on these parameters
adjm_t0 <- make_bnr(n = 100, np=c(0,0), pb = pb, pn = pn, pr = pr)
Iterate the network
adjm_t1 <- iterate_bnr(adjm = adjm_t0, np=c(0,0), pb = pb, pn = pn, pr = pr)

iterate_kp 5

iterate_kp Iterating a kp network

Description

Iterating a kp network

Usage

iterate_kp(adjm, np, pb, k, p)

S4 method for signature 'matrix,numeric,numeric,numeric,numeric'
iterate_kp(adjm, np, pb, k, p)

Arguments

adjm Adjacency matrix

np numeric vector setting ids for the newborn (i.e. which individual will be re-
placed with a new one) and a parent(s). Length 2 or 3. If you want to randomly
select an id for the newborn (first value) and parents (second and third value),
simply use c(0,0) or c(0,0,0). For one parent, the focal individual connects to
this parent with probability pb. For two parent values, the individual connects to
two parents each with probability pb.

pb Probability to connect to parent. Default is 1.

k Degree (number of connections a new individual will form)

p Maximum proportion of k that will be connections to neighbours of the par-
ent. The complimentary k*(1-p) connections will be formed with random other
individuals

Details

If you just want to iterate the graph you can use np=c(0,0) or np=c(0,0,0). However, the function
does not return the ids of the newborn and the parent(s). If you want to keep track of the ids that are
changed, you should provide these as an input to the function.

Value

Returns an iterated version of the supplied adjacency matrix as a numeric matrix.

Examples

Set up linking parameters:
pb <- 1
k <- 4
p <- 0.2
Generate a network based on these parameters
adjm_t0 <- make_kp(n = 100, np=c(0,0), pb = pb, k = k, p = p)

6 make_bnr

Iterate the network
adjm_t1 <- iterate_kp(adjm = adjm_t0, np=c(0,0), pb = pb, k = k, p = p)

make_bnr Generating a Pb, Pn, Pr network

Description

This function takes adj.matrix (ADJM), probabilities to connect to parent(s), neighbours, and ran-
doms (PB, PN, PR), the index of the parent (if NULL, default, NPARENT number of individuals
are randomly chosen as parent), number of parents (NPARENT, default is 1).

Usage

make_bnr(n, np, pb, pn, pr)

S4 method for signature 'numeric,numeric,numeric,numeric,numeric'
make_bnr(n, np, pb, pn, pr)

S4 method for signature 'numeric,numeric,missing,numeric,numeric'
make_bnr(n, np, pb, pn, pr)

Arguments

n Number of vertices (population size)

np numeric vector setting ids for the newborn (i.e. which individual will be replaced
with a new one) and a parent(s). Length 2 or 3. If you want to randomly select
an id for the newborn (first value) and parents (second and third value), simply
use c(0,0) or c(0,0,0).

pb Probability to connect to parent (default is 1)

pn Probability to connect to neighbour of parent(s)

pr Probability to connect to individuals that are not connected to the parent

Details

It is important to note that, although all three parameters (PB, PN, PR) are probabilities, i.e. values
between 0 and 1, the same value (say 0.2) means something different for each of them. This is
because, PB is the probability to connect to the parent(s), i.e. 1 or two individuals. In contrast, PN
and PR are the probabilities to connect to neighbours of the parent(s) or to random other individuals.
In the case of a small social neighbourhood of the parent(s) a PR of 0.2 would mean to connect to
a large amount of individuals in the remaining network. Therefore, it is important to keep in mind
that the value of both (or all three) values is important and not the individual one in isolation.

Value

Returns an unweighted (binary) adjacency matrix, where each cell represents the presence (1) or
absence (0) of an interaction between the row and the column individual.

make_kp 7

Examples

make_bnr(n = 10, np = c(0,0), pb = 1, pn = .2, pr = .01)

make_kp Generating a kp network

Description

This function ...

Usage

make_kp(n, np, pb, k, p)

S4 method for signature 'numeric,numeric,numeric,numeric,numeric'
make_kp(n, np, pb, k, p)

S4 method for signature 'numeric,numeric,missing,numeric,numeric'
make_kp(n, np, pb, k, p)

Arguments

n Number of vertices (population size)
np numeric vector setting ids for the newborn (i.e. which individual will be replaced

with a new one) and a parent(s). Length 2 or 3. If you want to randomly select
an id for the newborn (first value) and parents (second and third value), simply
use c(0,0) or c(0,0,0).

pb Probability to connect to parent (default is 1)
k Degree (number of connections a new individual will form)
p Maximum proportion of k that will be connections to neighbours of the par-

ent. The complimentary k*(1-p) connections will be formed with random other
individuals

Details

It is important to note that ... P is a maximum value, say an individual wants to have 10 connections
and P=0.5, i.e. it wants 5 connections to the neighbours of its parent but the parent only has 4 then
it will only inherit those 4.

Value

Returns an unweighed (binary) adjacency matrix, where each cell represents the presence (1) or
absence (0) of an interaction between the row and the column individual.

Examples

make_kp(n = 10, np = c(0,0), pb = 1, k = 4, p = .5)

Index

avg_degree_bnr, 2
avg_degree_bnr,numeric,numeric,numeric,numeric-method

(avg_degree_bnr), 2

init_graph, 3
init_graph,numeric,numeric-method

(init_graph), 3
iterate_bnr, 3
iterate_bnr,matrix,numeric,numeric,numeric,numeric-method

(iterate_bnr), 3
iterate_kp, 5
iterate_kp,matrix,numeric,numeric,numeric,numeric-method

(iterate_kp), 5

make_bnr, 6
make_bnr,numeric,numeric,missing,numeric,numeric-method

(make_bnr), 6
make_bnr,numeric,numeric,numeric,numeric,numeric-method

(make_bnr), 6
make_kp, 7
make_kp,numeric,numeric,missing,numeric,numeric-method

(make_kp), 7
make_kp,numeric,numeric,numeric,numeric,numeric-method

(make_kp), 7

8

	avg_degree_bnr
	init_graph
	iterate_bnr
	iterate_kp
	make_bnr
	make_kp
	Index

